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J. Phys. A: Math. Gen. 23 (1990) 4779-4792. Printed in  the U K  

On the existence of local and global Lagrangians for ordinary 
differential equations 

L A IborttQ and C L6pez-Lacasta$l/ 
f Instituto de Fisica Fundamental, Departamento de Fisica Teorica, Universidad 
Complutense de Madrid, 28040 Madrid, Spain 
$ Department of Mathematics, University of California, Berkeley, CA 94720, USA. 

Received 26 April 1990 

Abstract. Necessary and sufficient conditions for the existence of local and global 
Lagrangians for ordinary differential equations of arbitrary order are described in terms 
of the geometry of higher-order tangent bundles. The results are applied to the study of 
gauge invariant differential equations and the second-order differential equation defined 
by the ( 2  + 1 )-dimensional Yang-Mills Lagrangian with the Chern-Simons term is discussed. 

1. Introduction 

Necessary and sufficient conditions for the existence of local and global variational 
principles for systems of partial differential equations have been discussed (see for 
example [l-31 for the local existence and [4,5] for the obstructions io the existence 
of global Lagrangian densities). At the same time, a geometrical description of the 
inverse problem in Lagrangian dynamics in terms of the geometry of the tangent bundle 
was depicted in [6] providing necessary and sufficient conditions for the existence of 
local Lagrangians for second order differential equations (SODE). In this paper we 
show that not only the geometry of the (local) inverse problem for S O D E ~  but also the 
geometry of the (local) inverse problem for kth-order differential equations can be 
described in terms of the general inverse problem and vice versa, both approaches 
being related by the variational derivative, the first-order differential operator on forms 
associated to the exterior differential in the path space of the configuration space of 
the system, described extensively in [7-91 and from where we take most of our insights. 
It is remarkable that the condition for the existence of a local variational principle, 
easily expressed in the path space as the closedness of the Euler-Lagrange 1-form, 
becomes a rather intrincate geometrical property in terms of the intrinsic geometry of 
systems of differential equations in higher-order tangent bundles. At the same time we 
will indicate how the self-adjointness conditions for SODES are recast in this geometrical 
setting. 

We also discuss the obstructions to the existence of global Lagrangians. Our results 
are reformulations using the geometry of higher-order tangent bundles of results 
described in [4,5]. We show that the main obstruction to the existence of a global 
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Lagrangian is a second cohomology class in the configuration space of the system. 
This obstruction can be removed iff it is of integral class as has been already suggested 
in [lo]; we provide some simple formulae to compute it. Finally we will apply these 
results to the simple, but interesting case of gauge-invariant systems of differential 
equations. We will show that the reduced system is locally Lagrangian iff the unreduced 
system is locally Lagrangian, but at the same time, the reduced system does not have 
to be globally Lagrangian even if the unreduced system has a global Lagrangian. We 
will compute explicitly the obstruction for the reduced equations of a ( 2 +  
1)-dimensional Yang-Mills Lagrangian with the Chern-Simons term and we find that 
it is precisely the canonical generator of the second cohomology group of the moduli 
space of the theory. 

The paper is organized as follows. We will review some definitions and geometrical 
background on higher order tangent bundles in section 2 .  Section 3 will be devoted 
to the definition and properties of the variational derivative on 1-forms, the description 
of self-adjointness and the characterization of locally Lagrangian systems. In section 
4 we will discuss a method to decompose closed forms on bundles such that the base 
space is a strong deformation retract of the total space and we will apply this method 
to compute the obstructions to the existence of global Lagrangians. Finally we will 
apply some of the previous results to systems of gauge-invariant differential equations 
in section 5 .  

2. Notation and geometric framework 

2.1. Higher-order tangent bundles 

In this section we will review some basic facts about the geometry of higher-order 
tangent bundles (we refer the reader to [ l l ,  121 for a detailed account of the subject). 
Let M be a C"-differentiable manifold, we will denote by : T k M  + M the kth order 
tangent bundle over M, i.e. the set of equivalence classes of curves on M having a 
contact of kth degree at a given point. There is a natural family of projections 
T ~ :  T k M  + TIM, k 3 1, and it is well known that the maps 7i-l :  T k M  + T k - ' M  define 
natural affine bundles, the simplest case being T = T:, the unique that becomes a vector 
bundle. Local coordinates in T k M  will be denoted by ( q a ,  qp,), . . . , q ? k ) )  where q?,) 
denotes the rth velocity at the point q'. In these coordinates, T i ( ( , .  . . , q p k ) )  = 

Several natural geometric objects are defined on T k M :  the Liouville vector field 
Ak E E( T k M ) ,  a generalization of the dilation vector field on the vector bundle TM, 
with coordinate expression Ak = X:=,, r q ( , , d / d q ( , ) ;  the vertical endomorphism s k ,  a 
(1, 1)-tensor field with properties 

I 

( q a ,  ' * ' 9 qP1,). 

( s k )  kfl = 0 Im(Sk)' = ker(&')* Ns, = 0 

where the last equation represents the vanishing of the Nijenhuis tensor field 
of s k .  In local coordinates S k  =x!L: ( r +  l)d/dq(,,,)Odq(,). There is a canonical 
immersion d T k : ~ k ~ + ~ ( T k - ' ~ )  defined by d T ( q ,  . . . , q  ~ k ) ) = ( q ,  ..., q ( k - 1 ) ;  
q ( , ) ,  . . , , q ( k - ] ) ,  q ( k ) ) .  The map dT may also be considered as a vector field along the 
map T [ - ' ,  i.e. d T ( q , .  . . , q ( k ) )  =E::: q(,+l)a/aq(,,,  and therefore defines a map 
d ,  : C"( Tk- '  M )  + C"( T k M ) ,  called the total time derivative operator. The operator 
dTk defines a first-order differential operator on forms d ,  : A ( T k - ' M )  + A ( T k M )  
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satisfying, 

dTk 0 d = d 0 dTk d ,  ( f a  1 = dTJa +fdTka 

(see [13] for a general description on derivations along maps). 
Hereafter these three basic objects, the Liouville vector field A, the vertical 

endomorphism S and the total derivative dT,  will be denoted without subscripts, the 
context showing the actual object we are dealing with. I t  is easy to see that the action 
of dT on forms obeys the well known Cartan identity, dT = i(dT) 0 d + d 0 i(dT), where 
i(dT) denotes the contraction with the vector field d, .  

We can also use d T  to define complete lifts of vector fields X on M to T k M  by 
iteration using the formula Xk+l 0 d ,  = dT 0 X k ,  where X k  denotes the complete lift 
of X to TkM.  In what follows we will use the same letter X to indicate the different 
liftings of X E X( M )  the context indicating again the actual lifting. The advantage of 
this definition is that it can be used to define liftings of vector fields along arbitrary 
maps. The set of r-forms along the mapf:  M + N, i.e. the set of maps a : M + A r  ( T * N )  
such that T 0 (Y =f; will be denoted by Ak (f); for instance, A'  (T) denotes the set of 
semibasic forms on TM. An r-form on A' ( . ; - I )  will be called 1 semibasic. The use 
of vector fields and forms along maps has been shown to be fruitful in the geometric 
approach to classical and higher-order mechanics [ 141. 

Commutation relations between d,, S and i(X) will be used afterwards. By 
definition dT and i(X) commute; [S, dT] = nli on n-forms where S acts on forms as a 
derivation of zero degree. We can also define S(r) by S ( r p ( X 1 , .  . . , X,)= 
w(X,,  . . . , SX,, . . . , X,) and then it is clear that Sw = Z:=, S(rp.  Notice that in general 
S(,p is not a form. For example, if w is a 2-form 

S ( , , W  =;sw+;g, 

where g, is the symmetric tensor defined by gs(X, Y )  = w(SX, Y ) + w ( S Y ,  X). 

by the formula 
For any vector field X E X ( M )  and f~ C " ( M ) ,  the lifting of fX to T k M  is given 

k 1  
( fX)k= < d ; f S r X k  

r = ~  r .  

that can be proved easily by induction, using the commutation relations between dT 
and S. 

2.2. Lagrangian systems 

A natural description of parameter independent ordinary differential equations is 
carried out on the framework of higher-order tangent bundles by defining a system of 
Zth-order differential equations on M as a submanifold C c TIM; locally the submani- 
fold C will be described by a family of functions F,(q,  q ( ' ) ,  . . . , q ( / , )  = 0, the local 
coordinate expression of the system. We will assume that the order of the differential 
equation is precisely 1, in other words, ( T;-')-'( $IC) # C. Curves y on M whose lifts 
to T'M lie on C are holonomic solutions of the system. A system of differential 
equations C is in normal form when C is the image of a section cr of r ; - ' .  Systems 
in normal form define vector fields r, = d,  0 U on T'- 'M whose integral curves are 
lifted curves y' from holonomic solutions y of the system on M. 

d ,  o y"' = 9' = r, o y',  

In what follows we will omit the superscript in the lifting of curves. 
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Consider now a Lagrangian function 1, on T k M  and its associated Euler-Lagrange's 
equations, i.e. the system of differential equations of order 2k obtained from Hamilton's 
variational principle, whose geometric formulation is obtained using the variational 
derivative on functions 6 : A '  ( T k A 4 )  -$ A '  ( T 2 k )  defined by [ 11,121 

( 2 )  
( - l ) r  - (j; 0 S'. 6 = 

r = o  r !  

The 1-form a L  = 6 ( d L )  is a 1 .form along the map rZk with local coordinate expression 

Euler-Lagrange's equations associated to L are simply a L  = 0, i.e. the submanifold in 
T 2 k M  defined as the inverse image by c y L  of the zero section in T*M.  We will say that 
a system of ordinary differential equations a = 0 in T'M defined by a 1-form CY along 
the map T~ is locally Lagrangian if there exists a function L locally defined in 7 ' M  
such that a = S(dL).  

In terms of the Poincart-Cartan form 

the Euler-Lagrange equations (3) take the form a L  = dL - d T e L  = 0, For regular 
Lagrangian functions, the Euler-Lagrange equations are in normal form, i.e. there 
exists a unique section uL of 7;t-l such that c y L  0 U, = 0; the associated vector field 
r L  = d T  0 uL is the unique solution of the dynamical equation dL-  L f r L d L  = 0, or 
equivalently, i ( r L ) w L  = dE, with E L  = i (d-r ) f?L - L, and w,  = -deL the exact symplectic 
form associated to L. 

3. The variational derivative and locally Lagrangian systems 

3.1. The variational derivative on lTforms 
Let %'( M )  be the set of differentiable curves y on the manifold M. Given a Lagrangian 
L E  C"( T k M ) ,  the action integral is the local functional Y on % ( M )  

Hamilton's variational principle is formulated on the submanifold of curves with fixed 
endpoints xl , x2 E T k - ' M ,  M )  = { y : [ t ,  , t 2 ]  -$ M I yk-'( t i )  = xi E T k - - ' M } ,  and 
asserts that the possible evolution curves associated to the Lagrangian L are given by 
the critical points of Y on % ' l , 2 ( M ) ,  i.e., solutions of the equation 

A tangent vector to the set at the curve y ,  X E T.,%'L,2( M ) ,  is an equivalence class 
of curves p ( s )  = ys on %',, ,(M) agreeing at first order on y = yo, i.e. a class of maps 
p :  R x I + M defining a vector field X : I -+ TM along y, T O  X = y, vanishing at the 
endpoints, X(t ,)  = 0 (note that vanishing at endpoints extends to liftings of X until 
T k - ' M ,  and then higher-order liftings are vertical with respect to T ; - - ' ,  15 k, at the 
endpoints). The differential of Y at y evaluated on X can be expressed as 

dY( y)  = 0 Y E  %',2(M).  ( 5 )  

(dY(y),  X ) =  j r * ( i ( x I  d L )  = ( d L ( y ( t ) ) ,  X ( r ) )  dt. 
I 
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The symbol X on the right-hand side stands for an extension to an open neighbourhood 
in M containing ? ( I )  of the vector field X along the curve y. If we try to find solutions 
of Hamilton's variational principle contracting equation ( 5 )  with an arbitrary tangent 
vector X E T,%',,,(M) we cannot impose directly the vanishing of the integrand; 
integration by parts must be carried out, factorizing the arbitrary variation X and 
obtaining Euler-Lagrange's equations. Integration by parts can be implemented 
geometrically multiplying X by an arbitrary function YE C"( M ) ,  the new vector X, 
on T,V,,,(M) is X, ( r )=f (y( t ) )X( t )  and we have 

(dy ,  X,)(Y) = 1 r*( i ( ( fXIk)  dL) 
I 

= y * (  i A d;fi(S'X) dL 
r = ~  r .  

r !  

that must vanish for every f, then the factor in the last parenthesis defines a system of 
differential equations, the Euler-Lagrange equations aL = 0 presented before. In the 
computation above we have used the lifting formula ( l ) ,  commutation of d ,  with i (X),  
boundary conditions for X and ordinary integration by parts. The variational derivative 
6 defined in equation (2) emerges from the last expression, and property S 0 6 = 0 is 
obtained directly noticing the dependence of the integrand on f and not on its 
derivatives. Notice that even if 6 is said to act on functions, in fact, it is a first-order 
differential operator on the set of 1-forms in TkM.  

(@, W ( Y )  = 1 ?*(A X )  

We shall consider now a local 1-form 0 on the manifold V(M) defined by 

X E T,V(M)  

where q5 is a 1-form in A'  ( T k M ) .  Again the exterior differential d@ is easily computed 
in terms of the 1-form 4, but as in the case of functionals, closedness of @ is not 
equivalent to closedness of 4. Integration by parts must be carried on and a similar 
computation will give 

Because of the operator in the parenthesis above, a variational derivative on 1-forms 
can be defined as the first-order differential operator acting on 2-forms 61 : A' ( T k M )  + 
F2( T 2 * M )  given by the formula 

where 3, denotes the bundle of 2-covariant tensors. Dependence on f and not on its 
derivatives shows that S(,) 0 6, = 0. An alternative variational derivative = 
Z:=, ( - l ) r / r !  d ;  0 S;2 ,  is obtained considering the modified vector field f Y on the 
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second argument. Because S,(d&) is not antisymmetric, we can decompose 8 ,  into its 
symmetric as, and antisymmetric part aA, 

1 1 ( - l ) r  
2 2 r - 1  r !  8s=- (8 , -82 )= -  1 - d; gs' 

with gsr(X, Y)=w(S'X, Y)-w(X,S 'Y) and [S']w(X, Y)=w(S'X, Y ) +  

If $I is a semibasic 1-form, for instance a 1-form a representing a system of 
Euler-Lagrange differential equations, the 2-form d a  vanishes over two vertical vectors 
and S' can be written instead of [ S ' ]  on the expression of a A  in equation (7 ) .  It is 
also easy to show from (8)  that the symmetric variational derivative S s ( d a )  is a total 
time derivative Ss(da)  = d,P, therefore it is not relevant in the computation of d@ 
because integration of dTp(X, Y )  yields the values of p ( X ,  Y) at the endpoints that 
vanish because of the boundary conditions. The previous discussion is summarized in 
the following proposition. 

w(X,  S'Y) # S(ITZ ( S W )  . . .). 

Proposition 1. Let @ be a local 1-form on % , , , ( M )  defined by the 1-form 4 on T k M  
by @ ( y )  =)' -y*+ then, d o  = J  -y*(sA(dr$)) and in consequence is closed iff 
s A ( d 4 )  = 0. 

The variational derivative can be defined in a similar way for forms of higher 
degree, but such a generalization is not necessary here. In what follows we will use 
the notation 8 to indicate either the antisymmetric variational derivative on 1-forms 
aA, equation (7),  or the ordinary variational derivative on functions S defined by the 
equation (2) .  A 1-form q5 such that S ( d 4 )  = O  will be said to be &closed and notice 
that in general 8,  # 0 but, 8d8d = 0. 

3.2. &closed and self-adjoint diflerential equations 

As we have already pointed it out in the introduction, it is well known that a system 
of partial differential equations is localy Lagrangian iff the local Euler-Lagrange 1 -form 
6 defined by the equations in the space of fields is closed. We could use the description 
of the exterior differential in the space of curves given in proposition 1 to restate this 
condition in terms of the geometry of T k M  for systems of ordinary differential 
equations. 

i'leorem 1. For every Lagrangian function L. E C"( T k M ) ,  its associated Euler- 
Lagrange equations a L  = 8(dL) are 8-closed. Conversely, a system of differential 
equations a = 0 defined by a 1-form a : T'M + T*M along the map T, such that a is 
8-closed is locally Lagrangian. 

Roo$ The Euler-Lagrange 1-form tL on the space of curves defined by the Lagrangian 
L is given by & ( y )  = dY(g)  = J y*(8(dL)) = J  y*aL .  Then dCL = 0 implies automatically 
8 ( d a L )  = 0 (proposition 1). 
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On the other hand, given a E A '  (7,) such that S (da )  = 0 it is easy to show that the 
2-form w given by 

satisfies d a  = dTw. Let us note first that the kernel of the operator d T  is trivial on forms 
of degree 3 1  and consists of constant functions on forms of zero degree. It means 
that if 4 = d T p  and 4 is on TIM then p is on T ' - ' M ;  moreover, if dqb = dTP then p 
has to be closed because 0 = d 4  = dT dp. Therefore from d a  = d T W  it follows that 
w E A2 ( T ' - ' M )  and dw = 0. Let 8 be a locally defined 1-form such that w = -de; the 
1-form p = a + dT8  is closed and locally there exists a function L on TIM such that 
p = dL. It is easy to check that 

and finally a = dL-  d T 6 L  = aL. 0 

It happens that if the 1-form a is in A'  ( T z k )  the local Lagrangian function can 
always be chosen to be on T k M ;  other equivalent Lagrangians with dependence in 
higher-order velocities are obtained by adding total time derivatives. The reason for 
that is that the 2-form w defined by equation (9) always admits a local expression 
w = d 8  with 8 a k-semibasic form as shown in the following proposition. 

Proposition 2. Let a E A' ( 7 2 k )  be &closed, then there always exists a local Lagrangian 
L for a on T ~ M .  

Prooj From the definition of w in equation (9 ) ,  and the properties of S' and d ; ,  it 
follows that 

w Iker&!,)* = 0 

i.e. w vanishes over two vertical vectors along the map &!, . Then the locally defined 
1-form 8 such that d e  = w can be chosen to be in A' (&!,), and the Lagrangian form 
p = a + dT8 results to be projectable to T k M .  In fact, computing the variation of p 
along vector fields in ker( &)* we get 

2'"p = d(i( V)d,6)  v v E ker( T $ k ) *  

but d T 6  E A '  (&) and then 2 " p  = 0, v V E  ker( &)*, hence p = dL E A '  ( T k M ) .  0 

We will close this section discussing self-adjointness of a system of differential 
equations from the geometrical point of view described before. Consider a vector field 
X in M and a 1-form a : T ' M +  T*M defining a system of differential equations 
C = a-'(O). The variation 2Zxa of a under X will be denoted by ax and the invariance 
of S under X implies that ax is again a 1-form over T ~ .  The adjoint variation of a 
under X ,  a s ,  is defined by a:=s(d(i(X)a)).  Taking into account that i (X)aE  
C"( T ' M )  we find a: E A'  ( ~ ~ 1 ) .  The Cartan identity for the Lie derivative and 
S(2'xa) = 0 shows us that 

a: = ax - S(i(X) d a ) .  
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A 1-form a is self-adjoint if ax = a s  VX E X ( M ) ,  i.e. if S(i(X) d a )  = 0,VX E E ( M )  
(notice that the local coordinate expression of self-adjointness associated with our 
geometric definition coincides with that of [25], although the definition of variation 
and adjoint variation does not). The condition of self-adjointness on a is now easily 
shown to be equivalent to 6-closedness because 

k k 
(-l)rd;Sr(i(X) d a )  = i ( X )  1 - (-')' d;Si2) d a  = i(X)62 d a  S(i(X) d a )  = 1 - 

r = O  r! r = ~  r !  

but the space of lifted vector fields is an ample space for the tangent bundle T (  T k M )  
then S(i(X) d a )  = 0 for all X is equivalent to S2(da) = 0, hence equivalent to S ( d a )  = 0. 

In the particular case of SODES, the condition of self-adjointness becomes 

d a  = idTS( d a )  - f d  :S'( da) .  

This is precisely the intrinsic definition of the necessary and sufficient condition for 
the system a = 0 to be locally Lagrangian. In fact, last condition is equivalent to the 
separate equations 

d a  =Sd,S(da) S2(da )  = 0 

as can be seen using that a is semibasic. 

4. Obstructions to the existence of global Lagrangians 

In this section we will consider the problem of deciding whether there exists a global 
Lagrangian for a locally Lagrangian system of equations or not. For this purpose we 
will prove the following decomposition theorem. 

4.1. Decomposing forms on bundles 

Let E 4 M be a locally trivial fibre bundle having global sections and such that there 
is a strong deformation retraction 4, of E into M along the fibres. We will use an 
adaptation of the proof of the relative Poincari theorem to decompose a closed r-form 
w on the bundle E + M into the sum of an exact form on E and a closed form on M. 

Let w be an r-form on the manifold N and X, a time-dependent vector field on 
N, i.e. a family of maps X, : N + TN, such that X,( m )  is tangent to +,( m )  for all m E N 
[16]. The variation of the form w along the time-dpendent vector field X, is given by 
the Lie derivative formula 

d 
d t  - +Tu = 4?(i(X,) dw)+d+T(i(X,)w). (10) 

Choosing an open set on N such that the integral curves of X, contain the interval 
[0, 13, integrating (10) and denoting by I the map sending w into 5; 4T(i(X,)w) dt, we 
have for a closed form w 

r$Tw - 4,*w = d( Iw). (11) 
Consider now the particular case of N being the total space of a bundle E a M 

with the properties stated above, and let the time-dependent vector field X, be the 
time-dependent vector field A ,  tangent to the curves 4,(&), V g  E E, defined by the strong 
deformation retraction 4, ; formula (1 1) becomes 

w = d(lw) + r#~$w (12) 
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the map bl is the identity on E and 4o is precisely the projection map T identifying 
M with a submanifold of E defined by some global section. It is clear that 4:w is a 
basic form on E and therefore there exists a closed form Pw on M such that 
T*( Po) = 4;w.  We will call Pw the projectable part of w, and P induces an isomorphism 
between the de Rham cohomology rings H*( E )  and H*( M ) .  Notice that if the closed 
form w belongs to A; ( E ) ,  i.e., w vanishes over two vertical fields on E, then Iw is 
semibasic. Namely, for any vertical vector field V 

i( V)Iw = i( V ) 4 T ( i ( A , ) w )  dt = 4T(i((4-r)*V)i(A,)w) d t  = O  Io1 lo1 
because (4+)* V is a vertical field for any t. Then we have the following proposition. 

Proposition 3. Let E 4 M be a bundle satsifying the conditions stated in the previous 
paragraph, and w a closed r-form in A; ( E ) ,  then w decomposes as 

w=dOf.lr*Pw (13) 

where 8 = Iw is a semibasic form on E and Pw is a closed r-form on M and this 
decomposition is unique up to the addition of exact forms in M. 

Let us consider now projections of higher-order tangent bundles T: : TIM + TkM.  
It is clear that the projections T :  have global sections, and pasting together using a 
partition of unity, the locally defined family of maps 4,(q, q l ) ,  . . . , q ( l ) )  = 
(q ,  ql) ,  . . . , q ( k ) ,  tk+'q(k+l), . . . , t ' q ( l l ) ,  results that T ~ M  is a strong deformation retrac- 
tion of TIM. Denoting by (A:), the time-dependent vector field tangent along the 
curves 4t ,  we have the following corollary. 

Corollary 1. Let w be a closed r-form on T'M which vanishes when applied to two 
vertical vector fields along the map T:, i.e. w E A; ( E ) ,  with E = TIM and T = 7:. 

Then there exists an essentially unique ( I -  k)-semibasic (r-1)-form 8 on TIM and 
a closed r-form Po on T k M  related by the formula 

(14) w = d 8  + ( T : ) * (  Pw) .  

4.2. Obstructions 

If we have a system of S-closed differential equations a E A '  ( 7 2 k ) ,  i.e. a locally 
Lagrangian system, then the 2-form w E A' ( T 2 k - 1 M )  associated to a by equation (9) ,  
is closed and lies in ( E ) ,  E = T Z k - ' M  and .lr = T $ ; ! ~ .  Applying the decomposition 
formula (14) to w with 1 = 2k - 1, we get 

w = dB + (&ll)*Pw (15) 
where 8 is a k-semibasic l-form on T Z k - ' M  and Pw is a closed 2-form on T k - ' M .  
Denoting Po by wk and applying again the decomposition theorem (14) to 6.#k with 
I =  k-1  and k=O we get 

(16) 
where $ is a l-form on T k - ' M ,  not necessarily semibasic, and Pwk is a closed 2-form 
on M denoted in what follows by R. Notice that if a is a SODE, k = 1, the second 
decomposition, equation (16) is irrelevant and Po is already a closed 2-form in M. 

w k  = d$ + T?k- 1 )( p w k )  
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The cohomology class [RI E H 2 (  M )  of s2 will be called the (first) obstruction to 
the existence of a global Lagrangian for the system a = O .  If R is exact we will say 
that there are no essential obstructions to the existence of a global Lagrangian for a. 
In general we will say that the (first) obstruction [RI can be removed if the 2-form R 
is of integer class. In that case, it is well known that we can replace M by a circle 
bundle P % M and there is a connection 1-form A on P such that p * R  = dA. Then 
pulling back the decomposition of U ,  equation ( 1 9 ,  and wk, equation (16), to T Z k - ' P  
we find that p*w is exact 

p * w  = d[p*8+(&:, o p ) * $ +  T $ - ~ A ]  =deA.  (17) 
Assuming now that the obstruction [RI can be removed, we will denote p*w, p*8, 

p*$ and p * A  simply by w,  8, $ and A respectively; the circle bundle P will be denoted 
again by M and we will consider the k-semibasic 1-form 8A on T2k- 'M.  In theorem 
1 we proved that if a is locally Lagrangian the Lagrangian 1-form p = CY - dTOA is 
closed. Applying once more the decomposition theorem to p with 1 = k and k = 0, 
formula (14), we have 

P = d(IP) + .rF(Pp) (18) 

and denoting the 0-form I p  by L, we have 

Lc= Jb' 4T(i(Ak)P) d t  

where A k  is the Liouville vector field described in subsection 2.1. We call the cohomology 
class of the closed 1-form Pp the second obstruction to the existence of a global 
Lagrangian for a. This obstruction is very mild because we can always replace the 
configuration space M by its universal covering fi and then H ' ( f i )  = 0. In fi we 
will have Pp = -d V for some (potential) function V ,  and formula (18) becomes 

p = d (  L, -  7; V) (20) 
and the global Lagrangian on T k M  for the system a is L = L, -  7: V. It is remarkable 
that all terms appearing on equation (20) are explicitly computed from a. In the 
particular case of SODES, k = 1, the global Lagrangian obtained in this way has a natural 
affine approximation La given by the affine function along the fibres of TM 

(21) 
where denotes the evaluation of the connection 1-form A on the vectors of TM, i.e. a( v )  = AT(")( U), for all v E TM. The non-affine part of L,  will be denoted by L,, and 
consequently we have 

A 

L, = A - V *  V 

L =  L , , + ~ - ~ * V .  (22) 
The decomposition (22) of the global Lagrangian L of SODES gives at the same time 
the local normal form of locally Lagrangians systems; L,, is the nonlinear term in 
velocities, A the minimal coupling term, and V the potential function. 

5. Applications and examples 

5. I. Gauge invariant systems 

Dynamical systems obtained as reduction of gauge-invariant systems play an important 
role in physical theories. Consider the system of differential equations a = 0 defined 
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by the 1-form a E A '  ( T , )  and suppose that G is a group of symmetries of a, i.e. a 
group of transformations of M such that the lifted action of G to TIM preserves a, 
i.e. Yx0a =0,  V a  ~ g .  There is a natural action of the Ith tangent group T'G on T ' M  
defined by the formula j ' ( g )  . j ' ( y ) = j ' ( g .  y )  where j ' ( g )  and j ' ( y )  represent the 
equivalence class containing the lth lifting of the curves g and y in G and M 
respectively. The system of equations a = 0 is gauge-invariant with respect to the group 
G if a is invariant with respect to the action of T ' G  in T ' M ;  in particular a gauge- 
invariant system with respect to the group G possess G as a group of symmetries (see 
[17] for a motivation of this definition and [18] for a discussion on cohomological 
aspects of the equivariant inverse problem in the particular case of sot)Es).  If a is 
gauge invariant with respect to G, a projects to the quotient space T ' M / T ' G =  
T ' ( M / G )  defining a 1-form aG in T ' ( M / G )  along the map 7p: T ' ( M / G ) +  M / G ,  
aG E A'  (716). The system of differential equations aG = 0 will be called the reduced 
system of a by G. 

We will assume that M /  G is a manifold and the canonical projection 7rG : M + M /  G 
is a submersion. It is clear from figure 1 below that if we denote by 7rk : TIM + TI( M /  G )  
the canonical projection map along rG we have 7rZ 0 aG 0 rfc = a. The variational 
derivatives on 1-forms, corresponding to the exterior differentials on M )  and 
% , , 2 ( M / G )  respectively, 8 and aG, are related by (7rg)* 0 SG = 8 0 (7r&)* (see figure 
2; notice that ( T&)* acts in forms as ( rL)*aG = 7r& 0 aG 0 7rk). 

Proposition 4. Let a E A'  (q) be a gauge-invariant system of differential equations with 
respect to the group G, then a is locally Lagrangian iff the reduced system aG is locally 
Lagrangian. 

Proof: All we have to show using theorem 1 is that aG is S,-closed iff a is &closed, 
but this is clear because 

(&)*8,(daG) = 8(rk)*(d(a , ) )  = S(d(rL)*a,)  

If the reduced system aG is locally Lagrangian, we can try to relate the obstruction 
flG to the existence of a global Lagrangian for it and the obstruction fl for the unreduced 
system a. It is obvious that the natural lifting of the action of G to T ' M  preserves the 
vector field defined by the retraction of T'M to T k M  and in consequence the decomposi- 
tion formulae (14), (15) and (16) are equivariant, i.e. all the terms appearing in it w, 
B and Pw are invariant under G, and then the obstruction form i2 is projectable to 
M /  G. This proves the following theorem. 
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Theorem 2. (Equivariant obstruction theorem). Under the conditions stated in the 
paragraphs above, the cohomology class of the form R G  in M / G  determining the 
existence of a global Lagrangian for the reduced system aG is precisely the cohomology 
class of the projection of the obstruction R of cy. 

This result is particularly interesting when we do not really want to compute the 
quotient space M / G .  It allows us to identify the reduced obstruction nG in terms of 
the geometry of the unreduced space M. It is simple to see that even if the unreduced 
system is globally Lagrangian, the reduced system does not have to be so because the 
cohomology class of R can vanish on M but at the same time induce a non-trivial 
cohomology class in the quotient space. For instance, if R is exact and G does not 
preserve any potential 1-form of R, then the induced obstruction would not be zero 
in general and the reduced system will not have to be globally Lagrangian. If the group 
G is compact and R is exact, there always exists a G-invariant potential for it and the 
reduced system is Lagrangian. 

As we indicated before, systems of interest in physical theories are usually gauge 
invariant systems of SODES a = 0 in TM. In this particular situation the reduced system 
aG is defined in T (  M /  G )  and as we have seen before the obstruction form R projects 
to RG.  For example, consider the equations describing the motion of a charged particle 
in the magnetic field created by a monopole (see [lo] for a thorough discussion of 
this system). It happens that this SODE is locally Lagrangian but not globally Lagrangian. 
A simple computation shows the obstruction to the existence of a global Lagrangian 
is precisely the strength of the monopole’s magnetic field. This obstruction can be 
removed iff the Dirac quantization condition for the electric charge and the monopole’s 
magnetic charge holds, i.e. if the obstruction is of integer class. Removing the obstruc- 
tion amounts to the substitution of the original configuration space of the particle by 
a circle bundle over it. The equations of motion in the total space become globally 
Lagrangian and gauge invariant with respect to the natural action of U(1). The 
equivariant obstruction theorem can be applied and after projection, we recover the 
initial equations and the original obstruction. In the following section we will discuss 
an interesting infinite-dimensional analogue of the monopole-electron system that as 
in the previous discussion is globally Lagrangian before reduction and becomes locally 
Lagrangian after reduction unless some quantization condition holds. 

5.2. (2 + 1)-dimensional Yang-Mills equations with Chern-Simons term 

We shall consider the dynamical system obtained from a (2 + 1)-dimensional Yang- 
Mills theory with the Chern-Simons term. Let P(G, M )  be a principal fibre bundle 
with stuctural group G, a compact connected simple Lie group, for example SU(2), 
over a three-dimensional Riemannian manifold ( M ,  v), such that M ~2 x R for some 
Riemann surface I;. The configuration space of the system is d‘ x do where d denotes 
the affine space of irreducible connections on P ( G ,  I;) x id  do is the space of section 
of the adjoint bundle ad P over X, elements of do are locally functions 2 - 9 .  The 
Lagrangian on T ( d  x do) is given by [ 191 

1 1 A 
L ( A , A ;  Ao, AO)=-~lA-d ,A,11*-- (~F(A) l l2+47;(2(A, ,  2 2 * F ) + ( A ,  *A)) (23) 

where F ( A )  denotes the curvature of the connection A,  I/ - / /  denotes the L2 norm on 
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the space of ad P-valued forms over X associated to the product 

(a, P )  = Iz Tr(a  A * P )  Va,  p E Rk(Z,  ad P )  

and * is the Hodge operator defined by any Riemannian metric on the conformal class 
of the complex structure of the Riemann surface 2.  Denoting by % the group of gauge 
transformations of P(  G, Z) acting on the configuration space as 

g .  ( A ,  Ao) = (gAg-' + g dg-', gAng-') g E 3, ( A ,  A , )  E d x  d o  (24) 

the vector field associated to any infinitesimal generator of the group 3, 5 E L( 3) = 
R"(& ad P )  is given by X , ( A ,  A , )  = (dA& [ A , ,  [I), where dA denotes the covariant 
differential dA = d + [ A ,  '1. The complete and vertical liftings of this vector field to 
T ( d  x do) are given by 

It is apparent that L is not invariant under the action of the complete lifting (25) 
of the action of the group Ce but it is gauge invariant. The true phase space of the 
system is obtained quotienting out the action of the group of gauge transformations. 
Usually this is done using Dirac's theory of constraints in the canonical formalism to 
get rid of the constraints introduced by the degenerate Lagrangian L. It is also possible 
to reduce directly the Lagrangian system ( T ( d  x do),  L )  as indicated in the previous 
section or following the discussion in [13]. We are just interested in computing the 
obstruction for the existence of a global Lagrangian on the quotient space T(sP/%) .  
Then we will first compute the PoincarC-Cartan 1-form O L  defined by the Lagrangian 
(23) obtaining 

4x 

The Yang-Mills Cartan form w L  is obtained computing the exterior differential deL 
and we get 

A 
47T 

w L =  S A  A SA+ 2 [A , ,  SA] A SA + dXSA A 6Ao+- * SA A SA. (28) 

Notice that the kernel of w L  is spanned by the vector fields of the form 

X ( A , A ;  Ao,Ao)=@--+dA@-+*- S 6 S 
SA, SA SA, 

with arbitrary @, 9 E Rn(X:, ad P ) .  In other words ker w L  = Td,O L%' and a simple 
computation shows that w L  is invariant under the action of the Lie group 7%. We are 
in consequence in the situation of the equivariant decomposition theorem and we can 
compute the obstruction to the existence of a global Lagrangian in the reduced tangent 
bundle T ( d / % )  by just looking at the decomposition of w L  and then projecting the 
obstruction form R.  The obstruction R is given by R = (A /47~)  * SA A SA, or more 
explicitly 

va, P E T A ( & ) .  (29) R(a ,  p )  = -- A I Tr(a  A P )  
2 r  L 
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It is well known that R is a %-invariant symplectic form on d inducing the generator 
of the second cohomology group of the moduli space JU = a/ Ce and is of integer class 
iff A is integer. When this quantization condition is satisfied, the obstruction can be 
removed and a global Lagrangian exists on the tangent space of a circle bundle over d. 
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